Деление хлоропластов. Хлоропласты

Деление хлоропластов. Хлоропласты

Хлоропласты имеют зеленый цвет за счет преобладающего в них пигмента хлорофилла. Основная их функция - фотосинтез.

Количество данных органоидов в клетке варьирует. У некоторых водорослей в клетках содержится одни большой хлоропласт, часто причудливой формы. У высших растений их множество, особенно в мезофильной ткани листьев, где количество может достигать сотни штук на клетку.

У высших растений размер органоида около 5 мкм, форма округлая слегка вытянутая в одном направлении.

Хлоропласты в клетках развиваются из пропластид или путем деления надвое ранее существующих.

Строение хлоропласта

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами . Граны связаны между собой удлиненными тилакоидами - ламеллами .

Полужидкое содержимое хлоропласта называется стромой . В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. ).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Функции хлоропластов

Основная функция хлоропластов - это фотосинтез - синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом. В качестве побочного продукта фотосинтеза выделяется кислород. Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.

Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.

Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов. Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.

Хлорофилл состоит из длинного углеводного кольца и порфириновой головки. Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.

Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.

Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света. Больше всего в растениях хлорофилла А.

В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.

Федеральное Агентство науки и образования.

Сибирский Федеральный Университет.

Институт Фундаментальной Биологии и Биотехнологии.

Кафедра биотехнологии.

На тему: Строение и функции хлоропластов.

Выполнила: студентка

31гр.Шестопалова Н.С.

Проверила:

доцент кафедры

биотехнологии

д.б.н. Голованова Т.И.

Красноярск


1. Введение………………………………………....................................3

2. Обзор литературы…………………………………………….............4

2.1 Происхождение хлоропласта………………………………….........4

2.2 Развитие хлоропласта из пропластиды…………………………….5

2.3 Строение хлоропластов……………………………………………..7

2.4 Генетический аппарат хлоропластов……………………………....9

3. Функции хлоропластов……………………………………………...11

4. Вывод…………………………………………………………………16

5. Список используемой литературы………………………………….17


Введение:

Пластиды –это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов(высшие растения, низшие водоросли, некоторые одноклеточные организмы). У высших растений найден целый набор различных пластид(хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой которая осуществляет фотосинтетические процессы, является хлоропласт.


2.Обзор литературы:

2.1Происхождение хлоропласта.

Общепринятым в настоящее время является представление об эндосимбиотическом происхождении хлоропластов в клетках растений. Хорошо известно, что лишайники представляют собой форму сожительства (симбиоза) гриба и водоросли, при котором зеленые одноклеточные водоросли живут внутри клеток гриба. Предполагают, что таким же путем несколько миллиардов лет назад фотосинтезирующие цианобактерии (синезеленые водоросли) проникли в эукариотические клетки и затем в ходе эволюции потеряли свою автономность, передав большое число важнейших генов в ядерный геном. В результате независимая бактериальная клетка превратилась в полуавтономную органеллу, сохранившую главную исходную функцию - способность к фотосинтезу, однако формирование фотосинтетического аппарата оказалось под двойным ядерно-хлоропластным контролем. Под ядерный контроль перешли деление хлоропластов и сам процесс реализации его генетической информации, которая осуществляется в цепи событий ДНК РНК белок.

Неоспоримые доказательства прокариотического происхождения хлоропластов получены при анализе нуклеотидных последовательностей их ДНК. ДНК рибосомальных генов имеет высокую степень сродства (гомологию) у хлоропластов и бактерий. Сходная нуклеотидная последовательность обнаружена для цианобактерий и хлоропластов в генах АТФсинтазного комплекса, а также в генах аппарата транскрипции (гены субъединиц РНК-полимеразы) и трансляции. Регуляторные элементы хлоропластных генов - промоторы, локализованные в области 35-10 пар нуклеотидов до начала транскрипции, определяющие считку генетической информации, и терминальные нуклеотидные последовательности, определяющие ее прекращение, организованы в хлоропласте, как упоминалось выше, по бактериальному типу. И хотя миллиарды лет эволюции внесли массу изменений в хлоропласт, они не изменили нуклеотидную последовательность хлоропластных генов, и это является неоспоримым доказательством происхождения хлоропласта в зеленом растении от прокариотического предка, древнего предшественника современных цианобактерий.

2.2Развитие хлоропласта из пропластиды.

Хлоропласт развивается из пропластиды - маленькой бесцветной органеллы (несколько микрон в поперечнике), окруженной двойной мембраной и содержащей характерную для хлоропласта кольцевую молекулу ДНК. Пропластиды не имеют внутренней мембранной системы. Они плохо изучены ввиду их крайне малых размеров. Несколько пропластид содержится в цитоплазме яйцеклетки. Они делятся и передаются от клетки к клетке в ходе развития зародыша. Этим объясняется то обстоятельство, что генетические признаки, связанные с ДНК пластид, передаются только по материнской линии (так называемая цитоплазматическая наследственность).

В ходе развития хлоропласта из пропластиды внутренняя мембрана ее оболочки образует "впячивания" внутрь пластиды. Из них развиваются мембраны тилакоидов, которые создают стопки - граны и ламеллы стромы. В темноте пропластиды дают начало формированию предшественника хлоропласта (этиопласта), который содержит структуру, напоминающую кристаллическую решетку. При освещении эта структура разрушается и происходит формирование характерной для хлоропласта внутренней структуры, состоящей из тилакоидов гран и ламелл стромы.

В клетках меристемы содержится несколько пропластид. При формировании зеленого листа они делятся и превращаются в хлоропласты. Например, в клетке закончившего рост листа пшеницы содержится около 150 хлоропластов. В органах растений, запасающих крахмал, например в клубнях картофеля, крахмальные зерна формируются и накапливаются в пластидах, называемых амилопластами. Как выяснилось, амилопласты, как и хлоропласты, образуются из тех же пропластид и содержат такую же ДНК, как хлоропласты. Они формируются в результате дифференцировки пропластид по другому пути, чем у хлоропластов. Известны случаи превращения хлоропластов в амилопласты и наоборот. Например, часть амилопластов превращается в хлоропласты при позеленении клубней картофеля на свету.В ходе созревания плодов томатов и некоторых других растений, а также в лепестках цветков и осенних красных листьях хлоропласты превращаются в хромопласты - органеллы, содержащие оранжевые пигменты каротиноиды. Такое превращение связано с разрушением структуры тилакоидов гран и приобретением органеллой совершенно иной внутренней организации. Эту перестройку пластиде диктует ядро, и она осуществляется с помощью особых белков, кодируемых в ядре и синтезируемых в цитоплазме. Например, кодируемый в ядре 58 кДа полипептид, образующий комплекс с каротиноидами, составляет половину всего белка мембранных структур хромопласта. Так, на основе одной и той же собственной ДНК в результате ядерно-цитоплазматического влияния пропластида может развиваться в зеленый фотосинтезирующий хлоропласт, белый, содержащий крахмал амилопласт или оранжевый, заполненный каротиноидами хромопласт. Между ними возможны превращения. Это интересный пример различных путей дифференцировки органелл на основе одной и той же собственной ДНК, но под влиянием ядерно-цитоплазматического "диктата".

2.3Строение хлоропласта.

Хлоропласты - пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран ламелл стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом как бы связывают между собой отдельные граны хлоропластов. Однако полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.

В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

Хлорофилл А (сине-зеленый) - 70 % (у высших растений и зеленых водорослей);

Хлорофилл В (желто-зеленый) - 30 % (там же);

Хлорофилл С, D и E встречается реже - у других групп водорослей;

Его оболочка состоит из двух мембран - внешней и внутренней, между которыми находится межмембранное пространство. Внутри хлоропласта, путем отшнуровывания от внутренней мембраны, образуется сложная тилакоидная структура. Гелеобразное содержимое хлоропласта называется стромой.

Каждый тилакоид отделен от стромы одинарной мембраной. Внутреннее пространство тилакоида называется люмен. Тилакоиды в хлоропласте объединяются в стопки - граны . Количество гран различно. Между собой они связаны особыми удлиненными тилакоидами - ламеллами . Обычный же тилакоид похож на округлый диск.

В строме содержатся собственное ДНК хлоропластов в виде кольцевой молекулы, РНК и рибосомы прокариотического типа. Таким образом, это полуавтономный органоид, способный самостоятельно синтезировать часть своих белков. Считается, что в процессе эволюции хлоропласты произошли от цианобактерий, начавших жить внутри другой клетки.

Строение хлоропласта обусловлено выполняемой функцией фотосинтеза . Связанные с ним реакции происходят в строме и на мембранах тилакоидов. В строме - реакции темновой фазы фотосинтеза , на мембранах - световой . Поэтому они содержат различные ферментативные системы. В строме содержатся растворимые ферменты, участвующие в цикле Кальвина.

В мембранах тилакоидов содержатся пигменты хлорофиллы и каратиноиды. Все они участвуют в улавливании солнечного излучения. Однако ловят разные спектры. Преобладание того или иного типа хлорофилла в определенной группе растений обуславливает их оттенок - от зеленого до бурого и красного (у ряда водорослей). Большинство растений содержат хлорофилл а .

В строении молекулы хлорофилла выделяют головку и хвост. Углеводный хвост погружен в мембрану тилакоида, а головка обращена к строме и находится в ней. Энергия солнечного света поглощается головкой, приводит к возбуждению электрона, который подхватывается переносчиками. Запускается цепь окислительно-восстановительных реакций, приводящих в конце концов к синтезу молекулы глюкозы. Таким образом энергия светового излучения превращается в энергию химических связей органических соединений.

Синтезируемые органические вещества могут накапливаться в хлоропластах в виде крахмальных зерен, а также выводится из него через оболочку. Также в строме присутствуют жировые капли. Однако они образуются из липидов разрушенных мембран тилакоидов.

В клетках осенних листьев хлоропласты утрачивают свое типичное строение, превращаясь в хромопласты, у которых внутренняя мембранная система проще. Кроме того происходит разрушение хлорофилла, отчего становятся заметными каротиноиды, придающие листве желто-красные оттенки.

В зеленых клетках большинства растений обычно содержится много хлоропластов по форме похожих на немного вытянутый в одном направлении шар (объемный эллипс). Однако у ряда водорослей в клетке может содержаться один огромный хлоропласт причудливой формы: в виде ленты, звездчатый и др.

Хлоропласт - это одна из постоянных органелл клетки. Она осуществляет важнейший процесс планетарного значения - фотосинтез.

Общий план строения двухмембранных органелл

Каждая органелла состоит из поверхностного аппарата и внутреннего содержимого. Хлоропласты и митохондрии являются структурами клеток прокариот - организмов, имеющих ядро. Поверхностный аппарат этих органелл состоит из двух мембран, между которыми находится свободное пространство. Пространственно и анатомически они не связаны с другими структурными частями клетки и принимают участие в Митохондрии являются органеллами большинства видов грибов, растений и животных. Они служат для синтеза АТФ - вещества, которое является своеобразным запасом энергии клеток. Хлоропласт - это также двухмембранная органелла, которая относится к группе пластид.

Разнообразие пластид

В клетках живых организмов встречаются три типа хлоропласты, хромопласты и лейкопласты. Они отличаются по окраске, Хлоропласт - это пластида содержащая пигмент хлорофилл. Хотя часто, благодаря наличию других красящих веществ, они могут быть и бурыми, и красными. Например, в клетках различных водорослей. Одновременно хромопласты всегда бесцветны. Их основная функция - это запасание питательных веществ. Так, в клубнях картофеля содержится крахмал. Хромопласты - это пластиды, имеющие пигменты каротиноиды. Они придают цвет различным частям растений. Яркоокрашенные корнеплоды моркови и свёклы, лепестки цветков являются ярким примером этому.

Пластиды могут трансформироваться. Изначально они возникают из клеток которые представляют собой мелкие пузырьки, окружённые двумя мембранами. При наличии солнечной энергии они преобразуются в хлоропласты. При старении листьев и стеблей хлорофилл начинает разрушаться. В результате зелёные пластиды превращаются в хромопласты.

Приведём ещё несколько примеров. Все видели, что осенью листья меняют свой цвет. Это происходит благодаря тому, что хлоропласты превращаются в красные, жёлтые, бардовые пластиды. Такое же преобразование происходит при созревании плодов. На свету клубни картофеля зеленеют: в лейкопластах начинает образовываться хлорофилл. Конечным этапом развития пластид являются хромопласты, поскольку они не образуют другие типы подобных структур.

Что такое пигменты?

Цвет, функции и строение хлоропласта обусловлены наличием определённых веществ - пигментов. По природе они являются органическими соединениями, окрашивающими разные части растения. Хлорофиллы являются самыми распространёнными из них. Они встречаются в клетках водорослей и высших растений. В природе также часто попадаются каротиноиды. Они обнаружены у большинства известных живых существ. В частности, у всех растений, некоторых видов микроорганизмов, насекомых, рыб и птиц. Кроме того, что они придают цвет различным органам, каротиноиды являются основными зрительными пигментами, обеспечивая зрительное и цветовое восприятие.

Строение мембраны

Хлоропласты растений имеют двойную мембрану. Причём наружная является гладкой. А внутренняя образует выросты. Они направлены внутрь содержимого хлоропластов, которая называется стромой. С внутренней мембраной связаны и особые структуры - тилакоиды. Визуально они представляют собой плоские одномембранные цистерны. Они могут располагаться одиночно или собираться в стопки по 5-20 штук. Они называются граны. На структурах тилакоидов расположены пигменты. Основными из них являются хлорофиллы, а вспомогательную роль выполняют каротиноиды. Они необходимы для осуществления фотосинтеза. Строма также содержит молекулы ДНК и РНК, зерна крахмала и рибосомы.

Функции хлоропластов

Главная функция зелёных пластид - синтез органических веществ из неорганических за счёт энергии света. Его продуктами является полисахарид глюкоза и кислород. Без этого газа осуществление дыхания всех существ на Земле будет невозможно. А значит, фотосинтез является жизненно важным процессом планетарного значения.

Строение хлоропласта обусловливает и другие его функции. На мембране этих пластид происходит синтез АТФ. Значение этого процесса заключается в аккумуляции и хранении определённого количества энергии. Это происходит во время наступления благоприятных условий окружающей среды: наличия достаточного количества воды, солнечной энергии, пищи. Во время протекания процессов жизнедеятельности АТФ расщепляется с выделением некого количества энергии. Она расходуется во время осуществления роста, развития, движения, размножения и других процессов жизнедеятельности. Функции хлоропластов заключаются также в том, что в этих пластидах синтезируются некоторые липиды, и ферменты, участвующие в процессе фотосинтеза.

Значение процесса фотосинтеза

Хлоропласт - это связующее звено между растением и окружающей средой. В результате фотосинтеза происходит не только образование кислорода, но и водорода, поддержание постоянного состава атмосферы. Этот процесс ограничивает содержание углекислого газа, что препятствует возникновению парникового эффекта, перегреванию земной поверхности и гибели многих живых существ на планете. Пластиды хлоропласты, которые являются органеллами клеток, осуществляют важнейшие функции, обусловливая существование жизни на Земле.

Растительный мир - одно из главных богатств нашей планеты. Именно благодаря флоре на Земле есть кислород, которым мы все дышим, имеется огромная пищевая база, от которой зависит все живое. Растения уникальны тем, что могут превращать химические соединения неорганической природы в органические вещества.

Делают они это посредством фотосинтеза. Этот важнейший процесс протекает в специфических растительных органоидах, мельчайший элемент фактически обеспечивает существование всей жизни на планете. Кстати, а что такое хлоропласт?

Основное определение

Так называются специфические структуры, в которых происходят процессы фотосинтеза, которые направлены на связывание углекислого газа и образование некоторых углеводов. Побочным продуктом является кислород. Это вытянутые в длину органоиды, достигающие в ширину 2-4 мкм, длина их доходит до 5-10 мкм. У некоторых видов порой встречаются хлоропласты-гиганты, вытянутые на 50 мкм!

У этих же водорослей может быть другая особенность: на всю клетку у них имеется только один органоид этого вида. В клетках чаще всего имеется в пределах 10-30 хлоропластов. Впрочем, и в их случае могут встречаться яркие исключения. Так, в палисадной ткани обычной махорки имеется по 1000 хлоропластов на одну клетку. Для чего нужны эти хлоропласты? Фотосинтез - вот их главная, но далеко не единственная роль. Чтобы четко понимать их значение в жизни растения, важно знать многие аспекты их происхождения и развития. Все это описывается в дальнейшей части статьи.

Происхождение хлоропласта

Итак, что такое хлоропласт, мы узнали. А откуда эти органоиды произошли? Как получилось, что у растений появился столь уникальный аппарат, который превращает углекислый газ и воду в сложные

В настоящее время среди ученых превалирует точка зрения об эндосимбиотическом происхождении данных органоидов, так как их самостоятельное возникновение в клетках растения довольно сомнительно. Отлично известно, что лишайник - это симбиоз водоросли и гриба. при этом живут внутри Сейчас ученые предполагают, что в незапамятные времена фотосинтезирующие цианобактерии проникли внутрь а затем частично утратили «самостоятельность», передав большую часть генома в ядро.

Но свою главную особенность новый органоид сохранил в полной мере. Речь идет как раз о процессе фотосинтеза. Впрочем, сам аппарат, необходимый для выполнения данного процесса, формируется под контролем как клеточного ядра, так и самого хлоропласта. Так, деление этих органоидов и прочие процессы, связанные с реализацией генетической информации на ДНК, контролируются ядром.

Доказательства

Относительно недавно гипотеза о прокариотическом происхождении этих элементов была не слишком популярна в научном сообществе, многие считали ее «измышлениями дилетантов». Но после того как был проведен углубленный анализ нуклеотидных последовательностей в ДНК хлоропластов, это предположение получило блестящее подтверждение. Выяснилось, что эти структуры чрезвычайно схожи, даже родственны, ДНК бактериальных клеток. Так, аналогичная последовательность была найдена у свободноживущих цианобактерий. В частности, оказались чрезвычайно схожи гены АТФ-синтезирующего комплекса, а также в «аппаратах» транскрипции и трансляции.

Промоторы, которые определяют начало считывания генетической информации с ДНК, а также терминальные нуклеотидные последовательности, которые отвечают за ее прекращение, также организованы по образу и подобию бактериальных. Разумеется, миллиарды лет эволюционных преобразований смогли внести множество изменений в хлоропласт, но последовательности в хлоропластных генах остались абсолютно прежними. И это - неопровержимое, полное доказательство того, что хлоропласты и в самом деле когда-то имели прокариотического предка. Возможно, это был организм, от которого произошли также современные цианобактерии.

Развитие хлоропласта из пропластиды

«Взрослый» органоид развивается из пропластиды. Это маленькая, полностью бесцветная органелла, имеющая всего несколько микрон в поперечнике. Она окружена плотной двуслойной мембраной, которая содержит кольцевую ДНК, специфическую для хлоропласта. Внутренней мембранной системы эти «предки» органоидов не имеют. Из-за предельно малых размеров их изучение крайне затруднено, а потому данных об их развитии чрезвычайно мало.

Известно, что несколько таких протопластид имеется в ядре каждой яйцеклетки животных и растений. В ходе развития зародыша они делятся и передаются другим клеткам. Это легко проверить: генетические признаки, которые так или иначе связаны с пластидами, передаются только по материнской линии.

Внутренняя мембрана протопластиды за время развития выпячивается внутрь органоида. Из этих структур вырастают мембраны тилакоидов, которые отвечают за образование гран и ламелл стромы органоида. В полной темноте протопастида начинает преобразовываться в предшественник хлоропласта (этиопласта). Этот первичный органоид характерен тем, что внутри него располагается довольно сложная кристаллическая структура. Как только на лист растения попадет свет, она полностью разрушается. После этого происходит образование «традиционной» внутренней структуры хлоропласта, которая образована как раз-таки тилакоидами и ламеллами.

Отличия растений, запасающих крахмал

В каждой меристемальной клетке содержится несколько таких пропластид (их количество разнится в зависимости от вида растения и прочих факторов). Как только эта первичная ткань начинает преобразовываться в лист, предшественники органоидов превращаются в хлоропласты. Так, закончившие свой рост молодые листья пшеницы имеют хлоропласты в количестве 100-150 штук. Чуть сложнее обстоят дела в отношении тех растений, которые способны к накоплению крахмала.

Они скапливают запас этого углевода в пластидах, которые именуются амилопластами. Но какое отношение эти органоиды имеют к теме нашей статьи? Ведь клубни картофеля не участвуют в фотосинтезе! Позвольте разъяснить этот вопрос более подробно.

Мы выяснили, что такое хлоропласт, попутно выявив связь этого органоида со структурами прокариотических организмов. Здесь ситуация схожа: ученые давно выяснили, что амилопласты, как и хлоропласты, содержат точно такую же ДНК и образуются из точно тех же протопластид. Следовательно, и рассматривать их следует в том же аспекте. Фактически амилопласты следует рассматривать в качестве особой разновидности хлоропласта.

Как образуются амилопласты?

Можно провести аналогию между протопластидами и стволовыми клетками. Проще говоря, амилопласты с какого-то момента начинают развиваться по несколько иному пути. Ученые, впрочем, узнали кое-что любопытное: им удалось добиться взаимного превращения хлоропластов из листьев картофеля в амилопласты (и наоборот). Каноничный пример, известный каждому школьнику - клубни картофеля на свету зеленеют.

Прочие сведения о путях дифференцирования этих органоидов

Мы знаем, что в процессе созревания плодов томата, яблок и некоторых других растений (и в листьях деревьев, трав и кустарников в осенний период) происходит процесс «деградации», когда хлоропласты в растительной клетке превращаются в хромопласты. Эти органоиды содержат в своем составе красящие пигменты, каротиноиды.

Превращение это связано с тем, что в определенных условиях происходит полное разрушение тилакоидов, после чего органелла приобретает иную внутреннюю организацию. Вот здесь-то мы снова возвращаемся к тому вопросу, который начали обсуждать в самом начале статьи: влияние ядра на развитие хлоропластов. Именно оно, посредством особых белков, которые синтезируются в цитоплазме клеток, инициирует процесс перестройки органоида.

Строение хлоропласта

Поговорив о вопросах происхождения и развития хлоропластов, следует подробнее остановиться на их строении. Тем более что оно весьма интересно и заслуживает отдельного обсуждения.

Основная структура хлоропластов состоит из двух липопротеиновых мембран, внутренней и внешней. Толщина каждой составляет порядка 7 нм, расстояние между ними - 20-30 нм. Как и в случае других пластид, внутренний слой образует особые структуры, выпячивающиеся внутрь органоида. У зрелых хлоропластов существует сразу два типа таких «извилистых» мембран. Первые образуют ламеллы стромы, вторые - мембраны тилакоидов.

Ламеллы и тилакоиды

Нужно заметить, что прослеживается четкая связь, которую имеет мембрана хлоропластов с аналогичными образованиями, находящимися внутри органоида. Дело в том, что некоторые ее складки могут простираться от одной стенки до другой (как у митохондрий). Так что ламеллы могут образовывать либо своеобразный «мешок», либо разветвленную сеть. Впрочем, чаще всего эти структуры располагаются параллельно друг другу и никак не связаны между собой.

Не стоит забывать, что внутри хлоропласта находятся еще и мембранные тилакоиды. Это замкнутые «мешки», которые располагаются в виде стопки. Как и в предыдущем случае, между двумя стенками полости имеется расстояние в 20-30 нм. Столбики из этих «мешков» называются гранами. В каждом столбике может находиться до 50 тилакоидов, а в некоторых случаях их бывает еще больше. Так как общие «габариты» таких стопок могут достигать 0,5 мкм, иногда они могут быть обнаружены при помощи обыкновенного светового микроскопа.

Общее количество гран, которые содержатся в хлоропластах высших растений, может доходить до 40-60. Каждый тилакоид так плотно прилегает к другому, что их внешние мембраны образуют единую плоскость. Толщина слоя в месте соединения может доходить до 2 нм. Заметим, что подобные структуры, которые образованы прилегающими друг к другу тилакоидами и ламеллами, совсем нередки.

В местах их соприкосновения также имеется слой, достигающий порой тех же самых 2 нм. Таким образом, хлоропласты (строение и функции которых весьма сложны) представляют собой не единую монолитную структуру, а своеобразное «государство внутри государства». В некоторых аспектах строение этих органоидов не менее сложно, чем вся клеточная структура!

Граны связываются между собой именно при помощи ламелл. Но полости тилакоидов, которые образуют стопки, всегда замкнуты и никак не сообщаются с межмембранным пространством. Как видите, структура хлоропластов достаточно сложна.

Какие пигменты могут содержаться в хлоропластах?

Что может содержаться в строме каждого хлоропласта? Там имеются отдельные молекулы ДНК и немало рибосом. У амилопластов именно в строме откладываются крахмальные зерна. Соответственно, у хромопластов там имеются красящие пигменты. Разумеется, встречаются различные пигменты хлоропластов, но наиболее распространенным является хлорофилл. Он подразделяется сразу на несколько видов:

  • Группа А (сине-зеленый). Встречается в 70% случаев, содержится в хлоропластах всех высших растений и водорослей.
  • Группа В (желто-зеленый). В остальных 30% также обнаруживается у растений и водорослей высших видов.
  • Группы С, D и Е встречаются намного реже. Имеются в хлоропластах некоторых видов низших водорослей и растений.

У красных и бурых морских водорослей в хлоропластах не так уж и редко могут иметься совершенно другие виды органических красителей. В некоторых же водорослях вообще содержатся едва ли не все существующие пигменты хлоропластов.

Функции хлоропластов

Разумеется, основной их функцией является преобразование световой энергии в органические компоненты. Сам фотосинтез происходит в гранах при непосредственном участии хлорофилла. Он поглощает энергию солнечного света, переводя ее в энергию возбужденных электронов. Последние, обладая избыточным ее запасом, отдают излишки энергии, которая используется для разложения воды и синтеза АТФ. При распаде воды образуется кислород и водород. Первый, как мы уже писали выше, является побочным продуктом и выделяется в окружающее пространство, а водород связывается с особым белком, ферредоксином.

Он снова окисляется, передавая водород восстановителю, который в биохимии обозначается аббревиатурой НАДФ. Соответственно, его восстановленная форма - НАДФ-H2. Проще говоря, в процессе фотосинтеза происходит выделение следующих веществ: АТФ, НАДФ-H2 и побочного продукта в виде кислорода.

Энергетическая роль АТФ

Образующаяся АТФ крайне важна, так как является основным «аккумулятором» энергии, которая идет на различные нужды клетки. НАДФ-H2 содержит восстановитель, водород, причем это соединение способно легко его отдавать в случае необходимости. Проще говоря, это эффективный химический восстановитель: в процессе фотосинтеза происходит множество реакций, которые без него попросту не смогут протекать.

Далее в дело вступают ферменты хлоропластов, которые действуют в темноте и вне гран: водород из восстановителя и энергия АТФ используются хлоропластом для того, чтобы начать синтез ряда органических веществ. Так как фотосинтез происходит в условиях хорошей освещенности, накопленные соединения в темное время суток используются для нужд самих растений.

Вы справедливо можете заметить, что этот процесс в некоторых аспектах подозрительно похож на дыхание. Чем отличается от него фотосинтез? Таблица поможет вам разобраться в этом вопросе.

Пункты сравнения

Фотосинтез

Дыхание

Когда происходит

Только днем, при солнечном свете

В любое время

Где протекает

Все живые клетки

Кислород

Выделение

Поглощение

Поглощение

Выделение

Органические вещества

Синтез, частичное расщепление

Только расщепление

Энергия

Поглощается

Выделяется

Вот чем отличается от дыхания фотосинтез. Таблица наглядно показывает основные их различия.

Некоторые «парадоксы»

Большая часть дальнейших реакций протекает тут же, в строме хлоропласта. Дальнейший путь синтезированных веществ различен. Так, простые сахара сразу выходят за пределы органоида, накапливаясь в других частях клетки в виде полисахаров, прежде всего - крахмала. В хлоропластах происходит как отложение жиров, так и предварительное накопление их предшественников, которые затем выводятся в другие области клетки.

Следует четко понимать, что все реакции синтеза требуют колоссального количества энергии. Единственным ее источником является все тот же фотосинтез. Это процесс, который зачастую требует столько энергии, что ее приходится получать, разрушая вещества, образованные в результате предыдущего синтеза! Таким образом, большая часть энергии, которая получается в его ходе, затрачивается на проведение множества химических реакций внутри самой растительной клетки.

Лишь некоторая ее доля используется для непосредственного получения тех органических веществ, которые растение берет для собственного роста и развития либо откладывает в форме жиров или углеводов.

Статичны ли хлоропласты?

Принято считать, что клеточные органоиды, в том числе и хлоропласты (строение и функции которых нами подробно расписаны), находятся строго в одном месте. Это не так. Хлоропласты могут перемещаться по клетке. Так, на слабом свету они стремятся занять положение близ наиболее освещенной стороны клетки, в условиях средней и слабой освещенности могут выбирать некие промежуточные положения, при которых удается «поймать» больше всего солнечного света. Это явление получило название «фототаксис».

Для растений оно очевидно - это синтез энергии и веществ, которые используются растительными клетками. Но фотосинтез - это процесс, который обеспечивает постоянное накопление органического вещества в масштабах всей планеты. Из углекислого газа, воды и солнечного света хлоропласты могут синтезировать огромное количество сложнейших высокомолекулярных соединений. Эта способность характерна только для них, и человек пока далек от повторения этого процесса в искусственных условиях.

Вся биомасса на поверхности нашей планеты обязана своим существованием этим мельчайшим органоидам, которые находятся в глубинах растительных клеток. Без них, без проводимого ими процесса фотосинтеза на Земле не было бы жизни в ее современных проявлениях.

Надеемся, вы узнали из этой статьи о том, что такое хлоропласт и какова его роль в растительном организме.